1 1.1 Problems

Problem 1. Let $f(x) = x^3$, (1) find the second order Talyor polynomial $P_2(x)$ about $x_0 = 0$. Compute $P_2(x)$ and the error $R_2(x)$ (2) do the same but with $x_0 = 1$

Problem 2. Let $erf(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$, integrate the Taylor series to show that

$$erf(x) = \frac{2}{\sqrt{\pi}} \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{(2k+1)k!}$$

Problem 3 (Hard). If f(x) satisfies $|f(x) - f(y)| \le L|x - y|$ for all x, y and some fixed constant L > 0, prove f is continuous.

Suppose further that $|f(x) - f(y)| \leq L|x - y|^{\alpha}$ for fixed L and $\alpha > 1$, show that f is constant^a.

2 1.2 Problems

Problem 4. Compute the following (1) exactly (2) using three-digit chopping arithmetic (3) using threedigit rounding arithmetic (4) find relative errors in (2) and (3)

$$\left(\frac{1}{3} - \frac{3}{11}\right) + \frac{3}{20}$$

Problem 5. Compute the relative error between $e = \sum_{n=0}^{\infty} \frac{1}{n!}$ and $\sum_{n=0}^{m} \frac{1}{n!}$ for m = 5 and do it again but for m = 10.

Problem 6 (Hard). If fl(y) is a k-digit rounding approximation to y, show that:

$$\left|\frac{y - fl(y)}{y}\right| \le .5 \cdot 10^{-k+1}$$

3 1.3 Problems

Problem 7. Find the rate of convergence of the sequence as $n \to \infty$:

$$\lim_{n \to \infty} \sin \frac{1}{n} = 0$$

Problem 8. Find the rate of convergence of the sequence as $n \to \infty$:

$$\lim_{n \to \infty} [\ln(n+1) - \ln(n)]$$

Problem 9. Find the rate of convergence of the sequence as $n \to 0$:

$$\lim_{n \to 0} \frac{1 - \cos n}{n}$$

^athere's a funny story about this