1 1.1 Problems

Problem 1. Let $f(x)=x^{3}$, (1) find the second order Talyor polynomial $P_{2}(x)$ about $x_{0}=0$. Compute $P_{2}(x)$ and the error $R_{2}(x)$ (2) do the same but with $x_{0}=1$

Problem 2. Let $\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t$, integrate the Taylor series to show that

$$
\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k+1}}{(2 k+1) k!}
$$

Problem 3 (Hard). If $f(x)$ satisfies $|f(x)-f(y)| \leq L|x-y|$ for all x, y and some fixed constant $L>0$, prove f is continuous.

Suppose further that $|f(x)-f(y)| \leq L|x-y|^{\alpha}$ for fixed L and $\alpha>1$, show that f is constant ${ }^{\text {a }}$.

2 1.2 Problems

Problem 4. Compute the following (1) exactly (2) using three-digit chopping arithmetic (3) using threedigit rounding arithmetic (4) find relative errors in (2) and (3)

$$
\left(\frac{1}{3}-\frac{3}{11}\right)+\frac{3}{20}
$$

Problem 5. Compute the relative error between $e=\sum_{n=0}^{\infty} \frac{1}{n!}$ and $\sum_{n=0}^{m} \frac{1}{n!}$ for $m=5$ and do it again but for $m=10$.

Problem 6 (Hard). If $f l(y)$ is a k-digit rounding approximation to y, show that:

$$
\left|\frac{y-f l(y)}{y}\right| \leq .5 \cdot 10^{-k+1}
$$

3 1.3 Problems

Problem 7. Find the rate of convergence of the sequence as $n \rightarrow \infty$:

$$
\lim _{n \rightarrow \infty} \sin \frac{1}{n}=0
$$

Problem 8. Find the rate of convergence of the sequence as $n \rightarrow \infty$:

$$
\lim _{n \rightarrow \infty}[\ln (n+1)-\ln (n)]
$$

Problem 9. Find the rate of convergence of the sequence as $n \rightarrow 0$:

$$
\lim _{n \rightarrow 0} \frac{1-\cos n}{n}
$$

[^0]
[^0]: athere's a funny story about this

